Python NumPy Introduction - Complete Guide

text

1. NumPy Kya Hai?

NumPy (Numerical Python) ek popular Python library hai jo high-performance multidimensional arrays aur matrices ke saath numerical computation provide karti hai. Ye scientific computing aur data science ke liye bahut important hai.

2. NumPy Kab Aur Kyun Use Karein?

3. NumPy Install Kaise Karein?

pip install numpy
text

4. NumPy Import Karna

import numpy as np
text

5. NumPy Arrays Banana

NumPy ka core object hai ndarray jo homogenous data store karta hai.

import numpy as np

1D array
a = np.array()
print(a) # [1 2 3 4]
print(type(a)) # 

2D array (matrix)
b = np.array([, ])
print(b)

[[1 2 3]
[4 5 6]]
print(b.shape) # (2, 3) - 2 rows, 3 columns
text

6. Kuch Common NumPy Functions

import numpy as np

print(np.zeros((2, 3))) # 2x3 zero matrix
print(np.ones((3, 2))) # 3x2 matrix of ones
print(np.eye(3)) # 3x3 identity matrix
print(np.arange(5)) # Array [0 1 2 3 4]
print(np.linspace(0, 1, 5)) # 5 numbers from 0 to 1 evenly spaced
text

7. Array Operations

NumPy me arithmetic operations element-wise hote hain.

a = np.array()
b = np.array()

print(a + b) # [5 7 9]
print(a * b) # [4 10 18]
print(a ** 2) # [1 4 9]
print(np.sqrt(a)) # [1. 1.414 1.732]
text

8. Array Indexing aur Slicing

a = np.array()

print(a) # 10
print(a[1:4]) # [20 30 40]
print(a[-1]) # 50

b = np.array([, ])
print(b) # 2
print(b[:, 2]) # [3 6]
text

9. Practical Example: Matrix Multiplication

A = np.array([,
])
B = np.array([,
])

C = np.dot(A, B) # Matrix multiplication
print(C)

[[19 22]
[43 50]]
text

10. Summary

NumPy Python ke numerical computations ke liye ek powerful library hai jo efficient data processing aur scientific calculations me madad karti hai. Iska core object ndarray aapko multi-dimensional arrays create karne aur operations perform karne deta hai jo Python ke normal lists se kaafi faster aur optimized hote hain. Linear algebra aur statistical functions isko data science me bahut popular banate hain. NumPy seekhna data science ya scientific computing ke liye fundamental step hai.