Balanced trees maintain a balanced height to ensure operations like insertion, deletion, and search are efficient (O(log n)). The two popular balanced trees are AVL trees and Red-Black trees.
AVL trees are self-balancing binary search trees where the balance factor (difference between heights of left and right subtrees) of any node is at most 1.
class TreeNode:
def __init__(self, key):
self.key = key
self.left = None
self.right = None
self.height = 1
class AVLTree:
def getHeight(self, root):
if not root:
return 0
return root.height
def getBalance(self, root):
if not root:
return 0
return self.getHeight(root.left) - self.getHeight(root.right)
def rightRotate(self, z):
y = z.left
T3 = y.right
y.right = z
z.left = T3
z.height = 1 + max(self.getHeight(z.left), self.getHeight(z.right))
y.height = 1 + max(self.getHeight(y.left), self.getHeight(y.right))
return y
def leftRotate(self, z):
y = z.right
T2 = y.left
y.left = z
z.right = T2
z.height = 1 + max(self.getHeight(z.left), self.getHeight(z.right))
y.height = 1 + max(self.getHeight(y.left), self.getHeight(y.right))
return y
def insert(self, root, key):
if not root:
return TreeNode(key)
elif key < root.key:
root.left = self.insert(root.left, key)
else:
root.right = self.insert(root.right, key)
root.height = 1 + max(self.getHeight(root.left), self.getHeight(root.right))
balance = self.getBalance(root)
# Left Left
if balance > 1 and key < root.left.key:
return self.rightRotate(root)
# Right Right
if balance < -1 and key > root.right.key:
return self.leftRotate(root)
# Left Right
if balance > 1 and key > root.left.key:
root.left = self.leftRotate(root.left)
return self.rightRotate(root)
# Right Left
if balance < -1 and key < root.right.key:
root.right = self.rightRotate(root.right)
return self.leftRotate(root)
return root
Red-Black trees are binary search trees with an extra color attribute for each node: red or black. They ensure the tree remains approximately balanced through color properties and rotations.
Red-Black trees are more complex to implement but provide great performance in general balanced tree use cases.